Automated Discovery of Local Search Heuristics
for Satisfiability Testing

Alex S. Fukunaga fukunaga@is.titech.ac.jp
Tokyo Institute of Technology, Meguro, Tokyo, 152-8550, Japan

Abstract

The development of successful metaheuristic algorithms such as local search for a dif-
ficult problems such as satisfiability testing (SAT) is a challenging task. We investigate
an evolutionary approach to automating the discovery of new local search heuristics.
for SAT. We show that several well-known SAT local search algorithms such as Walk-
sat and Novelty are composite heuristics that are derived from novel combinations of
a set of building blocks. Based on this observation, we developed CLASS, a genetic
programming system that uses a simple composition operator to automatically dis-
cover SAT local search heuristics. New heuristics discovered by CLASS are shown to
be competitive with the best Walksat variants, including Novelty+. Evolutionary al-
gorithms have previously been applied to directly evolve a solution for a particular
SAT instance. We show that the heuristics discovered by CLASS are also competitive
with these previous, direct evolutionary approaches for SAT. We also analyze the lo-
cal search behavior of the learned heuristics using the depth, mobility, and coverage
metrics proposed by Schuurmans and Southey.

Keywords

Genetic programming, satisfiability, constraint satisfaction, SAT, hyper-heuristic, hy-
brid genetic-local search

1 Introduction

Metaheuristics such as evolutionary algorithms and local search are powerful, generic
tools for solving difficult, combinatorial optimization problems and constraint satisfac-
tion problems. However, for difficult problems such as the TSP and SAT, which have
already been the subject of years of intense study by researchers, developing a new
metaheuristic implementation that performs well enough to advance the current state
of the art for that problem is a very difficult task.

In this paper, we investigate the use of evolutionary computation to automatically
generate new, metaheuristic strategies for the Boolean satisfiability testing problem (SAT).
Satisfiability testing is a classical NP-complete decision problem. Let V' be a set of
Boolean variables. Given a well-formed formula F' consisting of positive and negative
literals of the variables, logical connectives V, A, the satisfiability problem is to deter-
mine whether there exists an assignment of true/false values to the variables in V' such
that F is true. For example, the formula (a VbV —¢) A (ma V ¢) A (ma V b V ¢) is sat-
isfiable, because if a = true,b = false,c = true, then the formula evaluates to true.
On the other hand, the formula (a V b) A (—a) A (—b) is unsatisfiable because there is no

(©2008 by the Massachusetts Institute of Technology Evolutionary Computation 16(1): 31-61

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

assignment of Boolean values to a, b such that the formula evaluates to true. SAT is
currently a very active field of research because many interesting and important appli-
cations such as processor verification (Velev and Bryant, 2003) and Al planning (Kautz,
2006) can be reformulated as SAT instances. Local search procedures for SAT have
been widely studied since the introduction of the first successful SAT local search algo-
rithms in the early 1990’s (Selman, Levesque, and Mitchell, 1992), and it has been shown
that for many problem classes, incomplete local search procedures can quickly find so-
lutions (satisfying assignments) to satisfiable CNF formula. Many new local search
heuristics have been proposed, and local search heuristics have improved dramatically
since the original GSAT algorithm. Significant improvements have included GSAT with
Random Walk (Selman and Kautz, 1993), Walksat (Selman, Kautz, and Cohen, 1994),
Novelty /R-Novelty (McAllester, Selman, and Kautz, 1997), and Novelty+/R-Novelty+
(Hoos, 1999).

This paper describes a genetic programming system which automatically discov-
ers new SAT local search heuristics. We begin in Section 2 with an overview of SAT
local search. We review the well-known, SAT local heuristics from the literature and
identify the common building blocks of those heuristics. We then analyze the histor-
ical process by which these heuristics were discovered by researchers and show that
recent advances were the result of combining existing building blocks. In Section 3, we
describe CLASS, a genetic programming system that searches for good SAT variable se-
lection heuristics. We empirically evaluate the performance of new heuristics evolved
by CLASS. In Section 4, we show that CLASS can successfully discover variable selec-
tion heuristics which are competitive with standard local search algorithms, as well as
previous evolutionary approaches to SAT. We analyze the local search behavior of the
heuristics generated by CLASS, using a set of depth, mobility, and coverage metrics
proposed by Schuurmans and Southey (2001). We also analyze the performance of the
CLASS GP algorithm and show that it is successfully searching the space of candidate
heuristics (Section 6). Section 7 compares our work to related work on automated com-
position and improvement of problem-solving heuristics, such as other systems from
the Al literature on synthesizing problem solving heuristics, e.g., (Minton, 1996), as
well as related work in the evolutionary computing literature such as hyper-heuristics
(Burke, Kendall, Newall, Hart, Ross, and Schulenburg, 2003). We conclude in Sections
8-9 with a discussion of our results and directions for future work.

2 Local Search Algorithms for SAT

A generic SAT local search algorithms is shown in Figure 1. After generating an initial,
random assignment of true/false values to the variables, one variable is “flipped” at
every iteration until a solution is found or the algorithm runs out of time. The key
design decision that distinguishes each of the different local search strategies is the
design and implementation of the variable selection heuristic in the inner loop (Figure 1,
Line 4), which is the procedure that decides the next variable to flip.

Many of the standard SAT local search procedures in the literature can be char-
acterized as instances of the template of Figure 1 with a particular variable selection
heuristic. We now introduce some terminology to facilitate the discussion of the com-
mon elements of GSAT/Walksat-family SAT variable selection heuristics throughout
this paper.

Evolutionary Computation Volume 16, Number 1 2

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

1. A:=randomly generated truth assignment

2. For j:=1 to cutoff

3. If A satisfies formula then return A

4. V:= Choose a variable using a variable selection heuristic
5. A:=A with value of V flipped

6. Return FAILURE (no satisfying assignment found)

Figure 1: A generic SAT local search algorithm.

Definition 1 (Positive/Negative/Net Gain) Given a candidate variable assignment T for a
CNF formula F, let By be the total number of clauses that are currently broken (unsatisfied) in
F. Let T" be the state of F if variable V is flipped. Let By be the total number of clauses that are
broken in T". The net gain of V is By — By. The negative gain of V' is the number of clauses
that are satisfied in T, but broken in T'. The positive gain of V' is the number of clauses that
are broken in T, but satisfied in T".

Definition 2 (Variable Age) The age of a variable is the number of variable flips since it was
last flipped. E.g., if we flip variable vy, and then on the next iteration flip vo, then at that point
in time, v1 has an age of 2, and v, has an age of 1.

The following are some well-known heuristics that have been proposed in the SAT
literature:

GSAT (Selman et al., 1992): Select variable from the formula with highest net gain.
Break ties randomly.

HSAT (Gent and Walsh, 1993): Same as GSAT, break ties in favor of maximum age
variable.

GWSAT(p) (Selman and Kautz, 1993): (Also known as “GSAT with Random Walk”)
With probability p, randomly select a variable in a randomly selected broken clause
BC; otherwise same as GSAT.

Walksat(p) (Selman et al., 1994): Pick random broken clause BC from F' If any variable
in BC has a negative gain of 0, then randomly select one of these to flip. Otherwise,
with probability p, select a random variable from BC to flip, and with probability (1 —
p), select the variable in BC' with minimal negative gain (breaking ties randomly).

Novelty(p) (McAllester et al., 1997): Pick random broken clause BC. Select the variable
v in BC with maximal net gain, unless v has the minimal age in BC. In the latter case,
select v with probability (1 — p); otherwise, flip v with second highest net gain.

Novelty+(p,p.,) (Hoos, 1999): Same as Novelty, but after BC is selected, with probabil-
ity pw, select random variable in BC; otherwise continue with Novelty.

R-Novelty(p) (McAllester et al., 1997): Behaves the same as Novelty, except when the
maximal net gain variable has the minimal age. In that case, let best denote the variable
with highest net gain, secondbest the variable with second highest net gain, and n =
netgain(best) — netgain(secondbest). Let p be a randomly generated number between
0 and 1. There are four cases: 1) When p < 0.5 and n > 1, return best. 2) When p < 0.5
and n = 1, then with probability 2p return secondbest, otherwise return best. 3) When

Evolutionary Computation Volume 16, Number 1 3

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

p > 0.5 and n = 1, return secondbest. 4) When p > 0.5 and n > 1, then with probability
2(p — 0.5) return secondbest, otherwise return best. Every 100 flips, a random variable
is selected from BC (this is intended to help escape loops)

2.1 Building Blocks for Variable Selection Heuristics

Based on previous descriptions, it is clear that these heuristics share some significant
features. In fact, we can view all of the above heuristics as composite heuristics which
are built from a set of building blocks for variable selection heuristics. We identify the
following building blocks, from which all of the above heuristics can be built.

o Scoring of variables with respect to a gain metric: Variables are scored with respect to
net gain or negative gain. Walksat uses negative gain, while GSAT and the Novelty
variants use net gain.

o Selecting a variable from some subset of variables: GSAT allows the selection of any
variable in the formula. Walksat and Novelty variants restrict the variable selection
to a single, randomly selected broken clause. Note that flipping any variable in a
broken clause will result in that clause being satisfied, although other clauses may
be broken as a side effect.

o Ranking of variables and greediness: The variables in the subset are ranked with re-
spect to the scoring metric. Of particular significance is the best (greedy) variable.
Novelty also considers the second best variable.

o Variable age: The number of flips since a variable was last flipped provides a mem-
ory which is useful for avoiding cycles and forcing exploration of the search space.
Age is used by the Novelty variants, as well as HSAT. A variant of Walksat with a
tabu list was evaluated in (McAllester et al., 1997).

e Branching: In most of the heuristics, some simple Boolean condition (either a ran-
dom coin toss or a function of one or more of the primitives listed above) is evalu-
ated as the basis for a branch in the decision process.

2.2 A historical analysis of the process of SAT local search improvements

Having identified the building blocks of some historically significant SAT local search
heuristics (specifically focusing on the line of local search algorithms exemplified by
GSAT and Walksat), we now analyze the developments of these heuristics in a historical
context, and identify the contribution of each heuristic, so that we have a model for the
process by which some key SAT heuristics were discovered.

GSAT (Selman et al., 1992) was the first widely known SAT local search heuristic
that was shown to be successful on many instances that were believed to be very dif-
ficult at the time. GSAT introduced the notion of scoring variables based on a net gain
metric. This generated much excitement in the AI community, resulting in the appear-
ance of numerous papers on SAT local search that tried to improve upon GSAT. An
obvious weakness of GSAT is that because it is a greedy algorithm, GSAT tends to get
stuck in local optima, so the original GSAT algorithm needed to be frequently restarted
from scratch with a random assignment in order to get out of local optima. GWSAT
(Selman and Kautz, 1993) addressed this problem and introduced several ideas: (1) a

Evolutionary Computation Volume 16, Number 1 4

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

conditional branch based on a random variable (the walk probability p), and (2) select-
ing a variable from a randomly selected broken clause (on the walk moves). At around
the same time, the HSAT heuristic (Gent and Walsh, 1993) introduced the usage of vari-
able age. Gent and Walsh also introduced the notion of picking a variable other than
the best variable according to the scoring metric (Gent and Walsh, 1993).

A major improvement in performance resulted from the introduction of Walksat
(Selman et al., 1994). One significant difference from previous GSAT variants was the
use of negative gain instead of net gain. Walksat also introduced the notion of a forced,
conditional flip as a building block — if there is any variable in the selected clause with
a 0 negative gain, then variable is flipped. The focus on a single randomly selected bro-
ken clause was new, but as noted above, the use of a broken clause as a building block
was already introduced by GWSAT. The next significant advance in the performance
of SAT local search algorithms came with the introduction of Novelty and R-Novelty
(McAllester et al., 1997), which combined previously existing building blocks (net gain
and variable age) into new combinations which were shown to significantly outper-
form Walksat. Finally, Novelty+ (Hoos, 1999) was developed based on a theoretical
analysis which showed that Novelty and R-Novelty were essentially incomplete - these
algorithms could get stuck in loops and never solve a given problem instance; Hoos ob-
served that adding random walk eliminated this problem, and showed empirically that
significant performance improvements could result.

While the development of Novelty/R-Novelty, as well as Novelty+ were moti-
vated by careful analysis of previous algorithms and resulted in significant improve-
ments in the state of the art performance, the actual components of these algorithms
were all introduced by the time Walksat was introduced to the community in 1994.
Thus, the main contributions of the Novelty variants were new, combinations of previ-
ously known primitives into new, effective heuristics that advanced the state of the art.
It can even be argued that Walksat did not introduce any fundamentally new building
blocks — the idea of using alternative scoring metrics such as negative and positive gain
had been proposed shortly after GSAT was introduced, and the idea of a forced move is
an instance of greediness (a fundamental concept in algorithm design), and is arguably
a natural concept. Thus, based on our analysis of the major SAT local search algorithms
developed between 1994-1999, we conclude the following:

Observation 1 The history of SAT local search algorithms shows that significant advances do
not require the invention of entirely new “ideas” — discovering a new combination of existing
building blocks has resulted in some of the best known SAT local search algorithms.

3 CLASS: A Genetic Programming System for Discovering Composite
Variable Selection Heuristics

In the previous section, we showed that combining a set of existing building blocks
has resulted in significant advances in the state of the art of SAT local search. We now
consider how such effective combinations can be derived. Some existing SAT heuristics
were designed as a result of a focused design process, which specifically addressed a
weakness in an existing heuristic. GWSAT and Novelty+ added random walk to GSAT
and Novelty after observing behavioral deficiencies of the predecessors (Selman and
Kautz, 1993; Hoos, 1999). However, some major structural innovations involve con-
siderable exploratory empirical effort. For example, McAllester et al (1997) note that

Evolutionary Computation Volume 16, Number 1 5

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

over 50 variants of Walksat were evaluated in their study (which introduced Novelty
and R-Novelty). Unfortunately, it is extremely difficult to determine a priori how ef-
fective any given heuristic will be. Empirical evaluation is necessary to evaluate the
performance of heuristics. Seemingly subtle differences can result in very significant
performance differences. For example, although there are many possible heuristics that
combine some subset of the essential building blocks of Walksat (random walk, some
greediness, localization of the variable domain to a single randomly selected broken
clause), the performance of Walksat variants varies significantly depending on the par-
ticular choice and structural organization of these “Walksat elements”. Furthermore,
significant performance differences between superficially similar local search heuris-
tics cannot be eliminated by merely tuning control parameters. See, for example, the
comparison of Walksat/G, Walksat/B, and Walksat/SKC in (McAllester et al., 1997).

Based on these observations, we formulated the main hypothesis of this paper:

Hypothesis 1 The task of combining building blocks into successful variable selection heuris-
tics is difficult to perform manually, even for expert researchers, and is well-suited for an auto-
mated system.

To test this hypothesis, we developed a genetic programming system for au-
tomatically discovering new SAT heuristics, CLASS (Composite heuristic Learning
Algorithm for SAT Search). The main components of CLASS are:

¢ A small language for expressing variable selection heuristics as s-expressions, and

o A meta-level, genetic programming algorithm that searches the space of possible
selection heuristics by repeated application of a composition operator.

CLASS represents variable selection heuristics in a Lisp-like s-expression lan-
guage. In each iteration of the local search, this s-expression is evaluated in place of
a hand-coded variable selection heuristic (Figure 1, Line 4).

Tables 1 and 2 show the terminals and functions in the CLASS language. As
an illustration, Figure 3 shows some standard heuristics represented as CLASS s-
expressions. The language is expressive enough to implement all of the standard
heuristics in Section 2 except for R-Novelty.!

CLASS uses a variant of strongly typed genetic programming (Koza, 1992; Mon-
tana, 1993), shown in Figure 2. The | ni ti al i ze function creates a population of ran-
domly generated s-expressions. The expressions are generated using a context-free
grammar as a constraint, so that each s-expression is guaranteed to be a syntactically
valid heuristic that returns a variable index when evaluated. The Sel ect function
picks two s-expressions from the population, where the probability of selecting a par-
ticular s-expression is a function of its rank in the population, using Whitley’s linear
rank-based selection function (Whitley, 1989). The Conpose operator (detailed below)
is applied to the parents to generate a set of children, which are then inserted into the
population, replacing the lowest-ranked members of the population. The best heuristic
found during the course of the search is returned.

IThe currently implementation can not express a random variables whose value is referenced more than
once in an s-expression e.g., the “p” and “2p” in R-Novelty.

Evolutionary Computation Volume 16, Number 1 6

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

[name | type | description |
+NEG- GAl N+, | gaintype Enumerated constant which represents negative gain,
+POS- GAI N+, positive gain, and net gain, respectively
+NET- GAl N+
<, <= ,= comparator | less than, less than or equal, equal comparators
+BCO+ varset randomly selected broken clause (BCO refers to the same,

broken clause throughout the an expression.)
+BCl+ varset another randomly selected broken clause (it is possible
that BCO and BC1 are assigned the same clause).
+WFF+ varset the entire formula.
Table 1: CLASS Language Terminals
name type | arguments description
| F- RAND- LT var | pfloat If a randomly generated floating point number
v1,v2 variable | is less than p, then return v1, else return v2
VAR- RANDOM var vs varset A randomly selected variable from the varset vs
GET- VAR var vs varset Returns variable from varset vs which has
g gaintype the best value of specified gaintype g.
E.g.(GET- VAR +BO0+ +NEG GAI N+) re-
turns the variable with lowest negative gain
from broken clause +BC0+.
GET- VAR2 var vs varset Variable from the varset vs which has the second
g gaintype best variable according to the gaintype g. E.g.,
(GET- VAR2 +WFF+ +NEG- GAl N+) returns the
variable with second lowest negative gain from
the set of all variables in the formula.
OLDER- VAR var v1, V2 variable | Least recently flipped of the variables v and va.
| F- TABU var age integer If the age of variable vy is less than age, then re-

v1, vz variable

turn ve; otherwise, return vy .

| F- VAR- COVPARE | var ¢ comparator For v1 and v, compute the gain value for
g gaintype gaintype g. Return v; or vz depending on
v1, V2 variable | whether applying the comparison c returns
true or false. E.g., (IF-VAR-COVPARE <
+NEG- GAl N+ w1 w2) will return vy if the neg-
ative gain of v; is less than the negative gain of
vg; otherwise, it returns vo.

| F- VAR- COND var | ccomparator | Compute gain(vi,g), the gain of vi according
g gaintype to gaintype g. Return v; if the expression
n integer [gain(v1,9) ¢ n] returns true; otherwise return
v1, v variable | va. E.g, (1 F-VAR-COND = 0 +NET- GAl N+
v1 vg2) returns v; if the net gain of vy is equal

to 0, and otherwise returns vo.
I F-NOT-M N- ACE | var | vs varset If v1 does not have minimal age among variables

v1,v2 variable | in a varset vs, then return vy, else vs.

Table 2: CLASS Language Functions

Initialize(popul ati on, popul ati on_si ze)
for i =1 to Maxlterations
Select parentl and parent2 from popul ation

ouhkwnhPE

chi |l dren = Compose(par ent 1, par ent 2)
Evaluate(Chi | dr en)
popul ati on = Insert_.and._replace(chi | dren, popul ati on)

Figure 2: CLASS Genetic Programming Algorithm.

Evolutionary Computation Volume 16, Number 1 7

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

;5 GABAT(0.5) (GWBAT with random wal k probability 0.5)
(IF-LTE 0.5

(VAR- RANDOM +BCO+)

(GET- VAR +WFF+ +NET- GAI N+)

;7 Wl ksat (0.5) (random wal k probability 0.5)
(1 F- VAR- COND = +NEG GAI N+ 0
(GET- VAR +BC0+ +NEG GAI N+)
(1 F-RAND-LTE 0.5
(GET- VAR +BC0+ +NEG GAI N+)
(VAR- RANDOM +BC0+)))

;7 Novel ty+(0.5,0.01) (noise 0.5 and wal k probability =0.01)
(I F-RAND- LT 0. 01
(VAR- RANDOM +BQ0+)
(1 F-NOT- M N- AGE +BCO+
(GET- VAR +BC0+ +NET- GAl N+)
(I F-RAND-LT 0.5
(GET- VAR2 +BCO+ +NET- GAI N+)
(GET- VAR +BCO+ +NET- GAI N+))))

Figure 3: GSAT with Random Walk (GWSAT), Walksat, and Novelty+ represented in
the CLASS language.

3.1 Composition - A special purpose GP operator based on the historical
development of SAT heuristics

The most significant difference between the CLASS learning algorithm and standard
strongly typed genetic programming is how new candidate solutions (children) are cre-
ated. Instead of applying the standard crossover and mutation operators, CLASS uses
a method that is inspired by the way in which historical, SAT local search algorithms
have been derived. Recall that GWSAT and Novelty+ were derived by adding random
walk to GSAT and Novelty. This can be generalized into a general meta-heuristic for
creating new variable selection strategies: Given two heuristics H; and H», combine
the two into a new heuristic that chooses between H; and H» using the schema:

If Condition H;, el se H,
where Condi ti on is a Boolean expression.

We call this the composition operator. Intuitively, this is a reasonable meta-heuristic
because it “blends” (switches between) the behavior of H; and H> according to some
Boolean condition. A special case where Condi ti on is a randomization function (i.e.,
I f (rand<p) then..)isa probabilistic composition, which has an interesting property.
Hoos (1998) defines a SAT local search procedure to be PAC (probably approximately
correct) if with increasing run-time the probability of finding a solution for a satisfiable
instance approaches 1.2 An algorithm that is not PAC is essentially incomplete. GSAT,
Novelty, and R-Novelty are essentially incomplete; however, their performance is sig-
nificantly improved by adding random walk, which was proven to make these algo-
rithms PAC (Hoos, 1998). In other words, the historical process by which GWSAT and
Novelty+ were generated can be modeled as applications of probabilistic composition.
Probabilistic composition has the following useful property:

2 Although Hoos’ notion of PAC local search is inspired by the well-known idea of “Probably Approxi-
mately Correct” in machine learning, these are different definitions and should not be confused.

Evolutionary Computation Volume 16, Number 1 8

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

Property 1 Let Hy and Hy be two variable selection heuristics. If either Hy or Hy is PAC,
then the composite heuristic (1f (rand p) then H; el se H,), the result of applying
the probabilistic composition operator is also PAC for all p,0 < p < 1. [Proof: follows from the
fact that as long as p > 0, there is a sequence of random choices which continues to choose H;]

Thus, during the process of searching for heuristics, if we have a candidate heuris-
tic whose major deficiency is essential incompleteness, then probabilistic composition
with any PAC heuristic in the population theoretically removes that deficiency.

The full composition operator used by CLASS takes two heuristics s-expressions
H, and H; as input and outputs 10 new heuristics to be inserted into the population:

e Five probabilistic compositions of the form (I f (rand p) H; Hj), for p=0.1,
p=0.25, p=0.5, p=0.75, and p=0.9

e (OLDER- VAR H; H,) -evaluates H; and H,, and returns the variable with max-
imal age.

e (IF-TABU 5 H; H,) - Let variable v be the result of H;. If age(v) is tabu (i.e.,
less than 5), then evaluate Hs.

e (I F-VAR-COND = +NEG GAI N+ 0 H; Hs) - Let vy be the result of Hy. if
NegativeGain(vy) = 0 return vy, else return vq, the result of Ho.

e (I F- VAR- COVWPARE <= +NEG GAI N+ H; Hs) - Let v; be the results of Hy, v
the result of Hy. If NegativeGain(v1) is less than or equal to NegativeGain(vs),
then return vy, else vs.

e (I F-VAR- COWPARE <= +NET- GAl N+ H; H)) -similar to (9), but uses net gain
as the comparator.

The composition operator used by CLASS naturally leads to code “bloat”, since
each child will be, on average, twice as complex as its parents. Uncontrolled bloat
would be a major problem in CLASS because fast evaluation of the s-expression
heuristics is critical to achieving our goal of fast local search runtimes. As a simple
workaround, we implemented a depth bound which works as follows.

If there is any subtree s of S rooted at depth bound such that the depth of the
subtree s is greater than 2 (i.e., s causes S to exceed its depth bound by more than 1),
then s is replaced by a randomly generated subtree s, which has the same type as s, but
is of minimal depth, which we define recursively to mean that if there exists a terminal of
the same type as s, then such a terminal is randomly selected; otherwise, the a random
function of the same type as s is generated, where the parameters are generated to be
of minimal depth. For example, if a candidate heuristic (OLDER- VAR (OLDER- VAR
(GET- VAR +BCQ0+ +NET- GAl N+) (GET- VAR +BCO+ +NEG GAI N+)) (GET- VAR
+BCl+ +POCS- GAl N+)) violates the depth bound condition by 1, then one of its
subtrees could be replaced with a shallower subtree (maintaining the type constraints),
resulting in (COLDER- VAR (GET- VAR +BCl+ +NET- GAl N+) (GET- VAR +BCl+
+PCS- GAl Nt)), The depth bound is “soft” because minimal depth replacement can
generate a replacement subtree s’ with depth greater than 1 (and thus, individuals
generated in a run with depth bound d will usually have depth of d 4 1. This depth
bound also has the additional, significant effect of introducing a type of “mutation”

Evolutionary Computation Volume 16, Number 1 9

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

at these new leaf nodes. Note that when this depth-bounded mutation occurs, then
the PAC-preservation property of composition may not hold. A recent comparison of
various other bloat control methods can be found in (Luke and Panait, 2006).

3.2 Evaluating the utility of a candidate heuristic

A candidate heuristic is executed on a set of training instances from the distribution
of hard, randomly generated 3-SAT problems from the SAT/UNSAT phase transition
region (Mitchell, Selman, and Levesque, 1992).3 First, the heuristic is executed on 200,
50 variable, 215-clause random 3-SAT instances, with a cutoff of 5000 flips. If more than
130 of these local search descents were successful, then the heuristic is run on 400, 100-
variable, 430-clause random 3-SAT instances with a 20000 flip cutoff. The 50-variable
instances serve to quickly filter out very poor candidates and not waste time evaluat-
ing them further with more expensive training instances, while the larger 100-variable
problems enable us to gain finer distinctions between the better candidate heuristics.

The score of an individual is: (# of 50-var successes) + 5 x (# of 100-var successes)
+ 1/MeanFl i psl nSuccessf ul Runs

The second term for the 100-variable instances is weighted heavily because perfor-
mance on large problems is much more important than performance on easier (smaller)
problems. The last term serves as a tie-breaker in case all of the 50 and 100 variable in-
stances are solved. The specific parameters (e.g., the cutoff of 130 successful descents
for the 50-variable instances) were determined by a series of small-scale preliminary
experiments that we performed in order to minimize the number of large instances in
the set (to minimize the time required to execute the evaluation function) while still
having a sufficient number of hard (large) instances to distinguish the performances of
the better candidate heuristics.

3.3 Implementation Details

So far, we have focused on the mechanisms required to represent and generate SAT
local search heuristics that searched for solutions with the fewest number of variable
flips possible. However, our goal is to generate SAT heuristics that perform well with
respect to both search efficiency (# of flips required to solve instances) and runtime.
Recall that CLASS evolves the variable selection heuristic for SAT local search, and the
variable selection heuristic is executed at every single variable flip 1. Thus, when we
say that an evolved heuristic & is applied to a SAT instance I, it means that if a local
search algorithm which uses & for variable selection requires 100,000 variable flips to
solve I, then h is executed 100,000 times. In a SAT local search algorithm, the time
spent executing the variable selection heuristic (as well as any related incremental data
structure updates) is the computational bottleneck. An algorithm which requires too
much computation per variable flip may end up running slower than a simpler heuris-
tic which execute more flips rapidly. Thus, we carefully implemented CLASS so that it
was possible to obtain fast runtimes.

The local search engine in CLASS implements the most efficient local search en-
gine found so far in the literature, with some enhancements that yielded significant

Smkenf (ftp:/ /dimacs.rutgers.edu/pub/challenge /satisfiability / contributed /UCSC/instances/Cnfgen.tar.Z) was used to gener-
ate training instances, using the flag to force the instance to be satisfiable.

Evolutionary Computation Volume 16, Number 1 10

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

speedups. A detailed description of these, as well as an extensive survey of efficient
data structures and algorithms to support local search can be found in (Fukunaga,
2004a). The standard implementation of SAT local search is the C implementation
by Henry Kautz and Bart Selman (Walksat version 43).* We have shown that on the
same machine, the CLASS local search engine, using a hand-coded s-expression for
the Walksat-SKC variable selection heuristic, 90% as many variable flips per second as
the Walksat-v43 implementation, compiled using gcc with - O3 optimization settings,
despite being implemented in Common Lisp. See (Fukunaga, 2004a) for details.

The GP component of CLASS generates an s-expression in the language specified
in Section 3. The functions and terminals in the CLASS language are actually imple-
mented as a set of macros and functions in Common Lisp. The Common Lisp com-
piler is used to compile the heuristic s-expression into efficient native machine code.
In other words, CLASS was implemented as a domain-specific language that was able to
fully leverage the underlying Lisp compiler and runtime environment. S-expression
simplification techniques and techniques for caching subexpression values were im-
plemented in order to minimize the amount of computation that needed to be done in
order to evaluate the heuristic. Further details are in (Fukunaga, 2004b).

4 Evaluation of the Performance of Automatically Generated Heuristics

In this section, we present several experiments to evaluate the performance of the SAT
local search heuristics that are generated by CLASS. We compare the heuristics evolved
by CLASS to both standard local search heuristics (Section 4.6-4.7) as well as previous,
direct, evolutionary approaches for solving SAT (Section 4.8).

4.1 Some Heuristics Generated by CLASS

This section describes the heuristics discovered by CLASS which are used in the per-
formance evaluations.

We performed 10 runs of the CLASS GP, where each run consisted of 5500 indi-
vidual evaluations (including the initial population), with a population of 1000. These
10 runs consisted of 2 runs each with depth bound of 2,3,4,5, and 6. The best indi-
viduals found in each of these 10 runs are used in our evaluations. They are named
“depthD-X", where D is the depth bound (2-6), and X is 1 or 2 (run #1 or #2).

In Figure 4, we show several of these evolved heuristics. With some effort, it is
possible to understand what these heuristics do. For example, depth2-2 considers two
broken clauses, BCO and BC1. Then, (a) the variable in BC1 with highest positive gain,
(b) the variable in BCO with highest net gain, (c) the variable in BCO with lowest neg-
ative gain, and (d) the variable in BC1 with lowest negative gain are computed. Out
of (a)-(d), the variable with maximum age is returned. Thus, depth2-2 first selects four
variables that are likely to be “good” for some reason (best positive, net, or negative
gain in a broken clause), and then chooses the least recently flipped variable of the
four.

4available at http:/ /www.cs.washington.edu/homes/kautz/walksat.

Evolutionary Computation Volume 16, Number 1 11

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

;7 Heuristic: depth2-1
(1 E- TABU 20
(OLDER- VAR (GET- VAR +BCO+ +NET- GAl N+)
(1 F- VAR- COWPARE < +PCS- GAI N+
(GET- VAR +BC0+ +POS- GAl N+)
(1 F- VAR- COND <= +NEG GAl N+ 2
(GET- VAR +BC0+ +NEG GAIl N+)
(GET- VAR +BCO+ +NET- GAI N+))))
(GET- VAR +BC0+ +POS- GAI N+))

;7 Heuristic: depth2-2
(OLDER- VAR (OLDER- VAR (GET- VAR +BCl1+ +POS- GAl Nt+)
(GET- VAR +BC0+ +NET- GAI N+))
(OLDER- VAR (GET- VAR +BC0+ +NEG GAI N+)
(GET- VAR +BCl+ +NEG GAI N+)))

;;; Heuristic: depth3-2
(I F-TABU 5
(OLDER- VAR
(1 F- TABU 20 (GET- VAR +BCl+ +NEG GAI N+)
(GET- VAR +BCl+ +NET- GAI N+))
(1 F-TABU 40 (GET- VAR +BCl+ +POS- GAl N+)
(GET- VAR +BCO+ +NEG GAI N+)))
(1 F-RAND- LT 0. 75
(1 F-TABU 5 (GET- VAR +BCl+ +NEG GAl N+)
(GET- VAR +BC0+ +NET- GAl N+))
(GET- VAR +BCO+ +NEG GAI N+)))

;;; Heuristic: depth4-2
(1 F- VAR- COWPARE <= +NEG GAI N+
(OLDER- VAR
(I F-RAND-LT 0. 75
(GET- VAR +BCl+ +NET- GAl N+)
(1 F- VAR- COND = +PCOS- GAI N+ 0
(GET- VAR +BC0+ +NET- GAl N+)
(GET- VAR +BCO+ +NEG GAI N+)))
(I F- VAR- COND <= +NEG GAI N+ 0
(I F- VAR- COND <= +NEG GAI N+ 0
(GET- VAR +BC0+ +NET- GAI N+)
(GET- VAR +BCl+ +NEG GAI N+))
(1 F- TABU 40 (RANDOM VAR +BCl1+)
(GET- VAR +BCl1+ +NEG GAI N+))))
(OLDER- VAR
(OLDER- VAR
(1 F-TABU 5 (GET- VAR +BCO+ +NET- GAl N+)
(GET- VAR +BCl+ +RANDOW))
(I F- VAR- COWPARE <= +NEG GAl N+
(RANDOM VAR +BC0+)
(RANDOM VAR +BC1+)))
(1 F- VAR- COWPARE <= +NET- GAI N+
(1 F-TABU 5 (GET- VAR +BCl+ +PCS- GAl N+)
(GET- VAR +BC0+ +NEG GAI N+))
(1 F- VAR- COWPARE <= +NEG GAl N+
(GET- VAR +BCl+ +NEG GAIl N+)
(GET- VAR +BCO+ +NET-GAIN+)))))

Figure 4: Some heuristics discovered by CLASS (depth2-1, depth2-2, depth, depth3-2,
depth4-2)

Evolutionary Computation Volume 16, Number 1 12

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

4.2 Local Search Algorithms for Comparison

We compare the evolved heuristics with hand-coded, optimized implementations of
Walksat (Selman et al., 1994) and Novelty+ (Hoos and Stutzle, 2000). The implementa-
tion we used for both algorithms is the standard Walksat/Novelty code distributed by
Henry Kautz, version 43. This is a highly optimized C implementation, compiled with
gcc using - O3 optimization. This package implements not only Walksat, but also all of
the Novelty variants. We also compare our evolved heuristics with our implementation
of GWSAT, which is GSAT with Random Walk using a 0.5 walk probability (Selman and
Kautz, 1993). It is well-known that the performance of SAT local search is sensitive to
control parameters (Hoos and Stutzle, 2000). For Walksat, we use a walk probability
of 0.5, which is the standard value in the literature. Likewise, for Novelty+, we use a
noise value (p in the Novelty+ description in Section 2) of 0.7 and a walk probability of
0.01 (pw), and a walk probability of 0.5 for GWSAT; these are all standard values.

4.3 Selection of Benchmark Instances

Two sets of benchmark instances were used. The first set consists of instances from the
SATLIB benchmark suite (www.satlib.org). These instances have been frequently used
as benchmarks by the SAT local search community, and include a variety of instances,
including hard random satisfiable 3-SAT instances, as well as problems transformed
into SAT from other problem formulations such as Al planning instances. The second
set of benchmark instances is from the evolutionary computation literature. These are
a set of satisfiable, random 3-SAT benchmark instances which were previously used by
Gottlieb et al. in their survey on evolutionary algorithms for SAT (Gottlieb, Marchiori,
and Rossi, 2002).°. These test suites (Suite A, Suite B, and Suite C) consist of randomly
instances of various sizes (number of variables ranging from 20-100) with a clause-to-
variable ratio of 4.3, which results in hard benchmark instances (Mitchell et al., 1992).

4.4 Method of Performance Measurement and Evaluation

Each algorithm was executed 100 times on each instance, with a computational limit, or
cutoff of F flips per execution. We measured: (1) the success rate, which is the percentage
of successful runs (where a solution is found within F' variable flips). (2) the average #
of flips to solution (AFS), the mean number of flips to find a solution in a run, when a
solution was found (i.e., flips in unsuccessful runs are not counted), and (3) the total run
time, spent running the algorithm on all tries on all instances of the given benchmark
instance(s). Since AFS excludes the unsuccessful runs, success rate is by far the most important
metric, and dominates AFS, which should be seen as a tie-breaker in case two algorithms solve
all instances. If algorithm A does not solve an instance within the time limit of F' flips,
then all we know is that A would take at least F' flips, but we do not have an upper
bound on the number of flips required by A.

The SR and AFS metrics are standard metrics for measuring SAT algorithm per-
formance in both the SAT local search literature, as well as the evolutionary computing
literature. The reason for this format is that requiring all solvers to solve all instances
would require too much time. On the Gottlieb instances, even increasing the cutoff
to 100,000,000 flips is not sufficient for all tries of all algorithms to solve all instances

5Downloaded from http://www.in.tu-clausthal.de/"gottlieb /benchmarks /3sat

Evolutionary Computation Volume 16, Number 1 13

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

uf100 (1000 instances)

Algorithm | SR AFS Time
GWSAT(0.5) | 99.96 8636 | 1189.63
Walksat(0.5) | 100.0 3658 399.23

Novelty+(0.7,0.01) | 99.998 2317 270.32
depth2-1 | 99.299*+ | 1824 603.38
depth2-2 | 99.312*+ | 2429 781.45
depth3-1 | 99.413*+ | 1748 569.06
depth3-2 | 99.406*+ | 1800 650.06

depth4-1 | 100.0 1868 286.79
depth4-2 | 100.0 2044 405.96
depth5-1 | 99.456*+ | 1728 783.11
depth5-2 | 100.0 1455 332.38
depth6-1 | 100.0 1887 451.59
depth6-2 | 100.0 1753 275.87

C-Rand | 99.435*+ | 1962 646.05

Table 3: SATLIB uf100-430 Random 3-SAT instances: Success Rate (%), Average Flips
to Solution, and total Runtime (seconds) for 100 runs/instance, 500,000 flips/run.

(Fukunaga, 2004b)°. Furthermore, SAT is a constraint satisfaction problem, where par-
tial solutions that violate one or more hard constraints do not necessarily have any
value. For some applications of SAT, a state with 1 unsatisfied clause can be just as
bad as a state with 100 unsatisfied clauses. Thus, the focus is on whether an instance is
solved, and if so, how much effort it required.”

4.5 Statistical Tests for Significance

In Tables 3-7, we evaluate whether the success rates of the evolved algorithms are sig-
nificantly different than the success rates of Walksat(0.5) and Novelty+(0.7,0.01). For
each evolved heuristic, we compared the total number of successful and unsuccessful
runs (the raw data from which the success rates are computed) with the number of
successful and unsuccessful runs for Walksat and Novelty. These values were tested
for significant differences using a standard chi-square test. In Tables 3-7, A "* indi-
cates a significant difference (p < 0.01) in the successes and failures on the benchmark
set between the evolved heuristic and Walksat. Likewise, a ‘+” indicates a significant
difference (p < 0.01) between the evolved heuristic and Novelty+.

4.6 Performance and Scaling on Test Instances Similar to or Smaller than the
Training Instances

Recall that CLASS uses a training set of 50 and 100 variable random 3-SAT instances as
the training instances during the learning process. We first evaluate the performance of
the learned heuristics on test instances similar to the training instances, which are hard
random 3-SAT instances generated with a clause to variable ratio of 4.3.

The results of running the standard Walksat, Novelty+, and GWSAT heuristics
as well as the evolved heuristics on the on the 1000 random 3-SAT instances in the
SATLIB uf100-430 benchmarks suite (100 variables, 430 clauses) are shown in Table 3.
On these instances, Walksat achieved a 100% success rate, whereas Novelty+ failed on

6Randomized restarts would, in theory, allow the instances to be solved eventually

7In contrast, there are variants of SAT such as MAX-SAT where partially satisfied formula are valuable
so the (weighted) number of broken clauses is used as a performance metric; however, the best MAX-SAT
solvers are not necessarily the best SAT solvers, and vice versa .

Evolutionary Computation Volume 16, Number 1 14

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

Gottlieb Test Set Suite-A
40 vars, 3 instances 50 vars, 3 instances 100 vars, 3 instances
Algorithm | SR AFS Time | SR AFS Time | SR AFS Time
SAWEA | 93 53289 - | 8 60743 -l 72 86631 -
RFEA2+ | 100 3081 - | 100 7822 - | 97 34780 -
FlipGA | 100 17693 - | 100 127900 - | 87 116653 -
ASAP | 100 8760 - | 100 68483 - | 100 52276 -
GASAT | 100 1135 -1 91 1850 -1 9% 7550 -
GWSAT(0.5) | 100.0 6062 217 | 90.33 31295 19.86 | 71.0 10104 37.74
Walksat(0.5) | 100.0 2604 0.85 | 99.67 22219 7.58 | 81.0 24855 25.75
Novelty+(0.7,0.01) | 100.0 1767 0.6 | 100.0 3061 1.12 | 90.0 33148 21.12
depth2-1 | 100.0 1023 0.41 | 100.0 10307 3.79 | 97.67*+ 34858 15.69
depth2-2 | 100.0 538 0.26 | 100.0 3634 1.6 | 99.67*+ 18549 8.8
depth3-1 | 100.0 981 0.4 | 100.0 8219 324 | 94.0* 28916 18.42
depth3-2 | 100.0 746 0.32 | 100.0 3453 1.44 | 99.67*+ 17771 7.84
depth4-1 | 100.0 722 0.34 | 100.0 5638 248 | 96.67*+ 30864 17.7
depth4-2 | 100.0 825 0.48 | 100.0 3416 1.94 | 100.0*+ 20754 12.1
depth5-1 | 100.0 817 0.47 | 100.0 5645 3.07 | 99.0*+ 24787 15.29
depth5-2 | 100.0 766 0.53 | 100.0 4506 299 | 99.33*+ 23871 17.05
depth6-1 | 100.0 1070 0.76 | 100.0 5225 3.67 | 100.0%+ 22291 15.91
depth6-2 | 100.0 692 0.35 | 100.0 5552 256 | 98.67*+ 28262 14.73
C-Rand | 100.0 1223 0.52 | 100.0 6160 2.57 | 99.33*+ 25349 12.01

Gottlieb Test Set Suite-B
50 vars, 50instances 75 vars, 50 instances 100 vars, 50 instances
Algorithm | SR AFS Time | SR AFS Time | SR AFS Time
RFEA2+ | 100 11350 - | 96 39396 -1 81 80282 -
FlipGA | 100 103800 - | 82 29818 - | 57 20675 -
ASAP | 100 61186 - | 87 39659 - | 59 43601 -
GASAT | 9% 2732 - | 83 6703 - | 69 28433 -
GWSAT(0.5) | 89.56 20841 2853 | 71.74 28584 641.7 | 56.6 17704 934.47
Walksat(0.5) | 94.4 18609 | 185.88 | 82.48 32939 439.38 | 59.16 21824 756.55
Novelty+(0.7,0.01) | 96.64 13783 | 133.32 | 89.3 25883 327.05 | 65.8 24655 713.48
depth2-1 | 93.9%+ 6859 1433 | 93.02*+ 27295 286.67 | 67.52%+ 29628 734.7
depth2-2 | 95.46*+ 3341 | 108.48 | 97.38*+ 20116 197.89 | 76.44*+ 40399 755.6
depth3-1 | 94.0*+ 7545 | 153.18 | 91.54*+ 27294 330.27 | 67.82%+ 28913 776.58
depth3-2 | 95.78*+ 4426 | 115.63 | 96.92*+ 19803 197.64 | 78.06*+ 38894 674.05
depth4-1 | 98.74*+ 8227 87.1 | 95.78*+ 26176 27895 | 72.64*+ 35905 805.94
depth4-2 | 99.38*+ 6590 79.49 | 98.48*+ 19791 232.66 | 78.8%+ 39909 926.71
depth5-1 | 95.0*+ 5880 1774 | 95.18*+ 23976 338.43 | 73.24*+ 34490 974.17
depth5-2 | 98.14*+ 7992 148.5 | 96.84*+ 22845 350.14 | 76.02*+ 36465 | 1108.43
depth6-1 | 98.9*+ 7866 | 129.17 | 97.26*+ 23091 36295 | 76.06%+ 38444 | 1208.03
depth6-2 | 98.7*+ 7968 91.05 | 96.42*+ 24565 267.01 | 73.0%+ 36429 830.2
C-Rand | 95.48*+ 6101 | 128.08 | 95.88*+ 23263 246.75 | 75.42*%+ 36124 735.85

Gottlieb Test Set Suite-C
60 vars, 100 instances 80 vars, 100 instances 100 vars, 100 instances
Algorithm | SR AFS Time | SR AFS Time | SR AFS Time
SAWEA | 73 47131 - | 52 62859 - | 51 69657 -
LSAWEA | 80 37439 - | 58 46337 - | 57 46497 -
RFEA2+ | 99 19957 -1 9 49312 -1 79 74459 -
FlipGA | 100 127520 -1 73 29957 -] 62 20319 -
ASAP | 100 184419 -1 72 45942 - | 61 34548 -
GASAT | 97 9597 - | 66 7153 - | 74 1533 -
GWSAT(0.5) | 89.07 24353 | 654.89 | 65.4 28845 | 1562.26 | 58.21 19057 | 1812.27
Walksat(0.5) | 94.72 21375 | 392.87 | 73.46 33265 11559 | 63.18 23684 | 1402.45
Novelty+(0.7,0.01) | 98.27 15703 | 241.62 | 81.66 30991 947.0 | 70.04 25869 | 1298.68
depth2-1 | 97.59%+ 12111 | 226.71 | 80.25* 27555 983.56 | 71.9% 28145 | 1309.69
depth2-2 | 98.83*+ 6796 | 141.05 | 89.94*+ 27638 770.54 | 79.86%+ 36685 | 1330.48
depth3-1 | 97.38*+ 13168 | 263.73 | 80.12* 27330 | 1045.88 | 71.6* 27758 | 1406.67
depth3-2 | 98.75*+ 6973 | 146.07 | 89.37*+ 25421 748.32 | 80.88*+ 35079 | 1194.42
depth4-1 | 99.62*+ 10410 | 169.33 | 89.1*+ 32035 904.0 | 74.95%*+ 32125 | 1474.93
depth4-2 | 99.98*+ 6692 | 129.52 | 94.88*+ 29144 830.81 | 81.33*+ 35966 | 1659.35
depth5-1 | 98.42* 9599 | 251.58 | 85.6%+ 27778 | 1196.53 | 76.4*+ 32523 | 1756.68
depth5-2 | 99.73*+ 8979 | 215.77 | 90.51*+ 30350 | 1241.74 | 78.95*+ 32552 | 1978.56
depth6-1 | 99.86*+ 8827 | 216.66 | 91.96*+ 30579 | 1233.36 | 78.58*+ 34478 | 2178.82
depth6-2 | 99.84*+ 9375 | 152.21 | 89.45*+ 30021 901.51 | 75.96*+ 33271 | 1501.05
C-Rand | 98.61*+ 8833 | 177.55 | 87.34*+ 27905 865.8 | 78.71*+ 34054 1315.8

Table 4: Gottlieb Suites A-C: Success Rate (%), Average Flips to Solution, and total Runtime (sec-
onds) for 100 runs/instance, 300,000 flips/run. Results for SAWEA, LSAWEA, RFEA2+, FlipGA
and ASAP are from Gottlieb et al. (2002). Results for GASAT are from Lardeux et al. (2006).

Evolutionary Computation Volume 16, Number 1

15

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

some runs. In comparison, five of the evolved heuristics achieved a 100% success rate.
Notably, the depth4-1 and depth6-2 heuristics performed particularly well, achieving
100% success with average runtimes of 286.79 seconds and 275.87 seconds, respectively,
compared to 399.23 secondes for Walksat.

The results on the Gottlieb benchmark suite instances are shown in Table 4. On
the Gottlieb instances, almost all of the evolved heuristics significantly outperformed
Walksat, Novelty+, and GWSAT on the more difficult instances (the Suite-B and Suite-C
instances, as well as the largest Suite-A instances).

These results on the uf100-430 instances and the Gottlieb benchmarks show that
the performance of evolved heuristics is competitive with that of the standard Walksat
and Novelty variants when executed on instances that are similar to (or in the case of
some of the Gottlieb instances, smaller than) the instances in the training set for which
they were evolved.

4.7 Generalization and Scaling of the Evolved Heuristics

Next, we evaluated the heuristics on benchmarks from problem classes that differed
significantly from the training instances, in order to see how well the heuristics gener-
alized and scaled beyond the test distribution for which they were specifically trained.
Again, for each instance, we executed each algorithm 100 times with a cutoff of 500,000
variable flips. It is important to keep in mind that none of the heuristics (hand-coded
or evolved) were tuned for the larger 3-SAT instances or the structured (planning,
graph coloring, all-interval-series) instances; we present this data in order to show how
well the heuristics discovered by CLASS generalize relative to the generalization of the
hand-coded heuristics.

First, we tested the local search heuristics on larger, hard 3-SAT from SATLIB
(uf 150, uf 200, and uf 250, which are 150, 200, and 250 variable problems, respec-
tively where the clause-to-variable ratio is 4.3). As shown in Table 5, the evolved heuris-
tics are comparable to Walksat and Novelty+ on the uf150 instances. For the uf200 and
uf250, most of the evolved heuristics perform slightly worse than the standard heuris-
tics with respect to search efficiency and runtimes.

We also tested the evolved and standard local search heuristics on SATLIB in-
stances from problem classes that were very different from the hard 3-SAT instances on
which the evolved instances were trained. These included five Al planning instances
(medi um huge, |ogistics.c, bwlarge.a, bwlarge.b), three all-interval-
series instances (ai s6, ai s8, ai s10),and 100 graph coloring instances (f | at 125).

Tables 6-7 shows that the results are quite mixed. For the huge planning bench-
mark, four of the evolved heuristics performed significantly worse than Walksat and
Novelty+. For | ogi stics. c and bw.l ar ge. a, the evolved heuristics did signifi-
cantly worse than the standard heuristics. On bw.| ar ge. b, five of the evolved heuris-
tics significantly outperformed both Walksat and Novelty+. The all-interval-series ai S
benchmarks are interesting because it is an unusual set of instances where Novelty+
performs significantly worse than Walksat. On these instances, the evolved heuristics
significantly outperformed Novelty+, although they did not do as well as Walksat. Fi-
nally, on the 100 graph coloring instances (f | at 125), half of the evolved heuristics
performed extremely poorly, and only one evolved heuristic (depth2-1) was compara-
ble to the standard heuristics.

Evolutionary Computation Volume 16, Number 1 16

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

uf150 (100 instances) uf200 (100 instances) uf250 (100 instances)

Algorithm | SR AFS Time | SR AFS Time | SR AFS Time
GWSAT(0.5) | 979 25227 | 531.31 | 93.64 57727 | 1446.88 | 92.25 70015 | 1891.58
Walksat(0.5) | 99.75 13395 | 162.85 | 97.22 28044 472.62 | 98.49 33308 473.45
Novelty+(0.7,0.01) | 99.94 8282 | 102.42 | 97.58 18558 370.62 | 98.15 21689 382.23

depth2-1 | 99.29* 7480 132.8 | 95.57*+ | 15362 429.59 | 97.08*+ | 20206 411.77
depth2-2 | 99.24*+ | 15330 | 280.44 | 90.59*+ | 60101 1514.4 | 80.88*+ | 90641 | 2557.89
depth3-1 | 99.23* 6851 | 136.85 | 96.09*+ | 15354 431.35 | 97.68*+ | 19261 395.51
depth3-2 | 99.49*+ | 10979 | 188.06 | 93.4*+ 45307 | 1049.45 | 86.61*+ | 73389 | 1813.98
depth4-1 | 99.99* 8232 | 125.96 | 97.97* 22565 484.97 | 98.15 30920 595.56
depth4-2 | 99.96* 12497 | 250.17 | 94.51*+ | 53219 | 1525.74 | 88.26*+ | 78426 | 2509.01
depth5-1 | 99.42*+ 7578 1913 | 96.16%+ | 22335 740.57 | 96.01*+ | 33553 969.2
depth5-2 | 100.0* 5774 | 129.88 | 98.24*+ | 19298 617.79 | 98.57+ 27148 753.74
depth6-1 | 99.99* 8957 | 21542 | 97.24 35952 | 1164.53 | 94.22*+ | 51184 | 1843.29
depth6-2 | 99.99* 8259 | 128.39 | 97.86* 25651 548.98 | 97.69+ 33667 676.74

C-Rand | 99.57+ 9538 | 169.58 | 95.12*+ | 34997 842.06 | 92.13*+ | 55535 | 1356.14

Table 5: SATLIB Random 3-SAT instances: Success Rate (%), Average Flips to Solution,
and total Runtime (seconds) for 100 runs/instance, 500,000 flips/run.

In general, the evolved heuristics significantly outperform GWSAT on all of the
SATLIB instances except for the graph coloring instances, where half of the evolved
heuristics perform very poorly. This shows that in all cases (except for graph coloring),
they are all at least performing competitively with a classical heuristic which was the
dominant method prior to Walksat.

Overall, these results show that the evolved heuristics scale and generalize fairly
well, better than what we initially expected, given that the evolved heuristics were only
trained on 50 and 100 variable random 3-SAT instances.

4.8 Comparison of the Automatically Generated Heuristics with Direct,
Evolutionary Approaches

Although we have focused on the local search so far, evolutionary computation has also
been applied to solve SAT directly, i.e., an evolutionary algorithm is applied to a pop-
ulation of candidate SAT solutions in order to search for a satisfying truth assignment.
In contrast, CLASS is a meta-level application of a genetic programming algorithm and
is an indirect approach, where an evolutionary algorithm is applied to a population of
local search heuristics in order to generate a local search algorithm. To date, the most
successful evolutionary approaches have been hybrid genetic-local search algorithms.

We briefly describe the algorithms included in the empirical comparison. A de-
tailed comparative survey is by Gottlieb et al. (2002).All of the most successful, direct
evolutionary computation approaches for SAT are based on a bit-string representation,
where individuals are bit strings, where each bit represent a variable, and the value of
the bit represents its current truth value. This is the same as variable assignment array
that is used by SAT local search algorithms.

e SAWEA is an evolutionary algorithm where clauses have weights (Eiben and
van der Hauw, 1997). The fitness function is the sum of the weights of the un-
satisfied clauses. Periodically, the weights on the broken clauses are increased.
LSAWEA is an extension of SAWEA which periodically applies a macro-mutation
which forces some broken clauses to become satisfied (this may cause other satis-
fied clauses to become broken) (de Jong and Kosters, 1998).

Evolutionary Computation ~Volume 16, Number 1 17

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

o RFEA2+ is an evolutionary algorithms which biases a variable’s value using a re-
fining function (Gottlieb and Voss, 2000).

o FlipGA is a hybrid genetic local search algorithm where standard genetic opera-
tors (uniform crossover, mutation) are used to generate children which are then
improved using a local search (Marchiori and Rossi, 1999). ASAP is a variant of
FlipGA with a tabu mechanism (Rossi, Marchiori, and Kok, 2000).

o GASAT is a hybrid algorithm that combines tabu search and a genetic algorithm
with a non-standard, problem-specific crossover operator (Lardeux et al., 2006).

Since we used the same instances and experimental parameters (cutoff) as the com-
parative study of Gottlieb, Marchiori, and Rossi, as well as the comparative study by
Lardeux et al. (2006), we can compare our results with results previously published
in the literature. Table 4 includes the results for the previous, direct, evolutionary ap-
proaches for SAT. The data for RFEA2+, FlipGA, SAWEA, LSAWEA, and ASAP are
copied from Tables 3,4, and 5 in (Gottlieb et al., 2002). The results for Suite B are based
on 50 runs per instance for RFEA+, and 10 runs per instance for ASAP. For Suite C, the
data for RFEA2+ is for 4 runs, and ASAP is for 5 runs. Each run was limited to 300,000
flips. Runtimes were not reported by Gottlieb, et al. Similarly, the data for GASAT are
copied from Table 8 in (Lardeux et al., 2006), and are based on 5 to 50 runs per instance
(Lardeux et al. did not give more specific details regarding the number of runs for each
instance), where each run was limited to 300,000 flips. Lardeux et al. did not report
runtimes for GASAT on these instances. As shown in Table 4, the heuristics discovered
by CLASS are quite competitive with the previous evolutionary algorithms.

4.9 Comparisons among Evolved Heuristics

Among the ten evolved heuristics (depth2-1,...,depth6-2, there is no clear, single “best”
evolved heuristic which dominates others across the benchmark set. From this limited
data, it is not possible to detect a clear correlation between the depth bound parameter
(which controls the size limit of the evolved s-expressions) and heuristic performance.
The main purpose of this present study was to show the feasibility of the CLASS ap-
proach, and Tables 3-7 indicate that CLASS is somewhat robust, in its ability to find
good heuristics is not critically dependent on a specific depth bound (at least for bounds
in the range 2-6). A larger-scale experiment to understand the impact of control param-
eters such as depth bound is a direction for future work.

5 Local Search Characteristics of Automatically Generated Heuristics

The experiments described in the previous sections have demonstrated that it is pos-
sible to discover highly effective SAT local search heuristics using CLASS. A natural
question is: Why do evolved heuristics perform well? Despite of the good performance
on the benchmarks, a possible concern is that the evolved heuristics might be “get-
ting lucky”, or exploiting some bizarre, hidden structure of the benchmarks. Are the
evolved heuristics truly “good” heuristics that we should be willing to consider as a
viable approach for a practical application? Given a choice between a simple, relatively
well-understood heuristic such as Novelty+ and a new, relatively complex evolved
heuristic such as depth4-2, a practitioner would probably prefer the simpler heuristic,
if there was no justification for the evolved heuristic other than benchmark results.

Evolutionary Computation Volume 16, Number 1 18

1 Iquny ‘9T swnjop uonendwo)) Areuonnjoag

61

medium huge logistics.c bw_large.a bw_large.b

1 instance 1 instance 1 instance 1 instance 1 instance

Algorithm | SR AFS | Time | SR AFS | Time | SR AFS Time | SR AFS | Time | SR AFS Time
GWSAT(0.5) | 100.0 | 4435 0.69 | 100.0 74845 | 25.79 | 1.0 356127 | 286.67 | 100.0 66060 | 20.55 | 33.0 222043 | 241.62

Walksat(0.5) | 100.0 | 1052 0.12 | 100.0 22157 3.98 | 44.0 228014 51.33 | 100.0 16173 223 | 43.0 233497 65.97
Novelty+(0.7,0.01) | 100.0 480 0.07 | 100.0 12805 2.3 | 98.0 143859 21.45 | 100.0 10083 143 | 47.0 205571 61.82
depth2-1 | 100.0 | 1212 0.16 | 83.0%+ | 12937 | 13.89 | 44.0+ 166917 53.4 | 73.0%+ 6802 | 18.31 | 88.0%+ | 181273 38.59
depth2-2 | 100.0 388 0.08 | 81.0*+ | 13620 | 16.94 | 7.0*+ 213999 80.98 | 84.0%+ 6718 | 12.66 | 18.0%+ | 219645 89.91
depth3-1 | 100.0 | 1052 0.15 | 84.0%+ 9192 | 13.32 | 33.0+ 206256 64.97 | 76.0%+ 8758 | 17.49 | 81.0%+ | 188747 46.29
dpeth3-2 | 100.0 393 0.06 | 87.0%+ | 10969 | 1298 | 9.0*+ 178684 73.96 | 84.0"+ 5466 | 13.66 | 32.0 242740 79.07
depth4-1 | 100.0 546 0.09 | 100.0 9764 206 | 8.0*+ 186419 83.14 | 100.0 6912 1.33 | 88.0*+ | 183345 44.73
depth4-2 | 100.0 389 0.09 | 100.0 40270 | 10.06 | 6.0%+ 302547 | 107.81 | 100.0 18510 4.16 | 3.0+ 293659 | 122.56
depth5-1 | 100.0 711 0.15 | 90.0+ 8322 | 12.02 | 11.0*+ | 240091 | 100.17 | 85.0%+ 5515 | 15.74 | 89.0*+ | 197899 55.15
depth5-2 | 100.0 612 0.15 | 100.0 9056 2.57 | 22.0*+ | 231474 | 108.77 | 100.0 7793 198 | 64.0* 226819 87.38
depth6-1 | 100.0 502 0.13 | 100.0 18584 56 | 5.0%+ 167078 | 126.49 | 100.0 7798 218 | 24.0%+ | 228202 128.8
depth6-2 | 100.0 431 0.1 | 100.0 10686 23 | 9.0+ 317346 84.09 | 100.0 6291 1.2 | 71.0%+ | 211548 59.38
C-Rand | 100.0 630 0.11 | 80.0*+ 9200 | 18.02 | 16.0*+ | 221815 76.16 | 77.0"+ 5380 183 | 44.0 257543 77.96

Table 6: SATLIB Planning Instances: Success Rate (%), Average Flips to Solution, and total Runtime on benchmark set (seconds) are
reported for 100 runs per instance, 500,000 flip cutoff per run.

ais6 (1 instance) ais8 (1 instance) ais10 (1 instance) flat125 (100 instances)

Algorithm | SR AFS | Time | SR AFS | Time | SR AFS Time | SR AFS Time
GWSAT(0.5) | 100.0 3088 0.48 | 100.0 59829 | 12.62 | 55.0 207871 92.62 | 60.38 143128 | 5411.14
Walksat(0.5) | 100.0 1310 0.17 | 100.0 34427 552 | 73.0 209207 56.88 | 98.32 67426 562.62
Novelty+(0.7,0.01) | 100.0 | 14188 1.87 | 92.0 158556 | 30.78 | 26.0 249560 94.13 | 99.23 33384 270.8

depth2-1 | 100.0 1250 0.2 | 100.0 27895 545 | 62.0+ 202725 73.04 | 98.58+ 56570 532.28
depth2-2 | 100.0 1217 0.22 | 100.0 70193 | 15.15 | 42.0%+ | 248377 99.58 | 0.38*+ 296300 | 5126.01
depth3-1 | 100.0 1484 0.25 | 100.0 63288 | 1298 | 21.0* 246091 | 108.55 | 81.41* 137015 | 1930.07
depth3-2 | 100.0 953 0.17 | 100.0 52614 | 10.93 | 36.0* 238851 97.49 | 0.33*+ 229787 | 4369.03
depth4-1 | 100.0 1241 0.23 | 100.0 80317 | 17.13 | 23.0* 255857 | 110.65 | 17.37*+ | 225017 | 4606.95
depth4-2 | 100.0 671 0.15 | 100.0 17573 4.58 | 71.0+ 175182 80.22 | 79.03*+ | 141196 | 3154.49
depth5-1 | 100.0 1166 0.26 | 99+.0 81986 | 22.06 | 18.0* 169063 1285 | 0.99*+ 272501 | 6966.45
depth5-2 | 100.0 969 0.28 | 100.0 44556 | 12.98 | 50.0%+ | 224772 | 118.56 | 91.93*+ | 100415 | 2215.57
depth6-1 | 100.0 743 0.2 | 100.0 20657 6.27 | 73.0+ 177931 88.93 | 74.88*+ | 149728 | 4527.96
depth6-2 | 100.0 998 0.18 | 100.0 55535 | 12.03 | 39.0*+ | 247451 | 100.46 | 34.11*+ | 203289 | 4000.53

C-Rand | 100.0 1051 0.2 | 100.0 46594 | 10.12 | 26.0 220075 | 107.84 | 1.86*+ 256905 | 5056.44

Table 7: SATLIB All-Interval-Series and Graph Coloring Instances: Success Rate (%), Avg. Flips to Solution, and total Runtime (seconds)
are reported for 100 runs per instance, 500,000 flip cutoff.

800 ‘T9-1€:(1)91 “sS91 LI ‘uonemndwo) Arevonnjoaq ur paysiqnd uorsia [eurd: LIVIA

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

As shown in Section 4.1, one can inspect evolved heuristics (Figure 4), and ob-
serve that they appear to encode “reasonable” behavior. This is not surprising, since the
CLASS language is designed to encode combinations of reasonable building blocks.
Unfortunately, as we argued in Section 2, some heuristics which appear reasonable
perform very poorly, and it is extremely difficult, if not impossible, to ascertain a pri-
ori whether one seemingly good heuristic will actually outperform another Therefore,
merely “understanding” the syntactic structure of an automatically generated heuristic
is not sufficient. In order to be more confident that that the evolved heuristics are in fact
“doing the right thing”, we need to obtain a deeper understanding of the behavior of
the algorithms that are generated by CLASS. Some tools are available for characteriz-
ing the behavior of local search algorithms. Schuurmans and Southey (2001) identified
several metrics of local search behavior that were shown to predict the problem solving
efficiency of standard SAT heuristics. The following definitions of depth, mobility, and
coverage are from (Schuurmans and Southey, 2001; Southey, 2005):

The depth of a SAT local search algorithm at time step ¢ is the number of broken
clause at step t. We take an average of the depth over all search steps (excluding the
first 100 steps).® A low average depth (i.e., low mean number of broken clauses) sug-
gests that the search algorithm is spending much of its time exploring states with good
objective function values.

Mobility measures how rapidly a search moves in the search space. It is calculated
by computing the Hamming distance between variable assignments that are k search
steps apart and averaging these distances over the entire sequence of steps to obtain
average distances at time lags £k = 1,2,3,...,t. We measured the mobility over the
entire run of the search algorithms. Intuitively, higher mobility means that a search
algorithm is exploring new regions rapidly, which is desirable.

Coverage measures how broadly the search space is being explored by a search al-
gorithm. Let the gap in the search space be the maximum Hamming distance between
any unexplored assignment and the nearest explored assignment. Schuurmans and
Southey’s coverage metric estimates how rapidly the gap is being reduced — the rate
of gap reduction indicates the rate at which an algorithm is covering the search space.
Computation of the coverage rate is nontrivial; Southey (2005) presents a precise defi-
nition of the metric as well as an algorithm for approximately computing the coverage
rate. It is desirable to have high coverage, because search algorithms that get stuck in
local optima tend to have low coverage.

We measured depth, mobility, and coverage for three evolved heuristics C1, C2,
and C3 (generated in three separate CLASS runs with an s-expression depth limit of 6),
executed on 100 instances from the uf100-430 benchmarks (uf100-0001 through uf100-
0100, 10 runs per instance, 10,000 flips). We also measured these metrics for several
standard heuristics (GWSAT with noise probability 0.5, Walksat with noise probability
0.5, R-Novelty with noise 0.68). As shown in Table 8, the performance of C1, C2, and
C3 was competitive with R-Novelty. Furthermore, Table 8 suggests that performance
is correlated with mobility and coverage. In other words, it appears that the evolved
heuristics and R-Novelty performed well compared to Walksat and GWSAT because
they searched more broadly (higher mobility) and more systematically (higher cover-
age) than Walksat and GWSAT.

8Since the initial assignments are randomly generated, all algorithms will begin at a very poor depth.
Skipping the first 100 steps focuses the metric on the behavior of the algorithms after the initial descent.

Evolutionary Computation Volume 16, Number 1 20

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

successes | flips | depth | mobility | coverage
GWSAT 285 | 4471 8.00 11.683 | 0.00007854
Walksat 902 | 2151 6.97 14.504 | 0.0004819
R-Novelty 987 | 1101 8.23 23.237 | 0.001183
C1 958 | 1624 7.30 18.420 | 0.000789
c2 952 | 1771 7.08 20.505 | 0.000882
C3 989 | 1045 7.89 22.468 | 0.001249

Table 8: Local search characteristics of learned and standard heuristics (100 instances,
10 runs per instance (1000 runs total), cutoff=10000 flips). The successes column shows
the number of successful runs.

Next, we conducted a large-scale experiment to measure the depth, mobility, and
coverage metrics on a large sample of heuristics generated by CLASS. 1200 heuristics
were chosen as follows: 400 from the population at the end of the CLASS run which
produced C2, 400 from the initial (random) population of the same run, and 400 from
the population at the end of the run which generated C3. This way, we sought to sam-
ple a wide range of heuristics, ranging from very poor (random) to good to very good.
Each heuristic was executed on 100 instances from the uf50-215 (50 variable, 215 clause)
benchmarks from SATLIB (100 runs per instance with cutoff of 1000 flips). Figures 5
shows the depth, mobility, and coverage metrics versus the heuristic’s performance
(number of successful runs). There is a very high correlation between performance and
coverage (r=0.89), and weaker correlations with depth (r=-0.31) and mobility (r=0.138).
The weak correlation between performance and the mobility metric is caused by the
large number of very bad heuristics in the randomly generated subset of heuristics that
perform very badly but nevertheless display high mobility. When all of the randomly
generated heuristics were excluded, then the correlation between mobility and perfor-
mance increased to r=0.30. The correlation between depth and performance without
the random heuristics was 0.22 (note the change in the sign of the coefficient). Figure 5
suggests that high coverage is both necessary and sufficient for local search success on
these random 3-SAT instances. For mobility and depth, there is apparently a range of
values that are necessary (but not sufficient) for good performance.

These experiments show that good performance in heuristics generated by CLASS
is correlated to their coverage and mobility, which is expected of good local search
algorithms — the good performance of evolved heuristics is not just due to pure “luck”
or some unexplainable exploitation of our particular benchmark instances.

6 Evaluation of the CLASS Genetic Programming Algorithm

Searching for good SAT local search heuristics using CLASS is extremely time-
consuming. Each call to the evaluation function requires hundreds of descent of a
local search algorithm, and during each descent, thousands or variable flips are ex-
ecuted, and each flip requires the execution of the candidate heuristic, i.e., each call
to the fitness function results in hundreds of thousands of evaluations of the candidate
s-expression. The main goal of this work was to see whether it was possible to automat-
ically discover novel SAT local search heuristics that were competitive with previous,
hand-crafted heuristics. Thus, an extensive empirical comparison of meta-level evolu-
tionary algorithms for discovering SAT heuristics is outside of the scope of this paper
and left for future work. Given that each run of CLASS takes several hours, obtaining

Evolutionary Computation Volume 16, Number 1 21

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

% T T T T T T T T T % T T T T T T T T T 0005

0.0045.
0004
0.0035.
0003

0.0025

Mobility

0002

00015

0001

s

W oous | ¥4

) S S S S R 0 P T R S S P S RS R S
0 00 200 300 400 50 600 700 80 90 1000 0 BUCT:] 00 400 50 600 00 800 %0 1000 0 100 200 300 400 500 600 700 600 900 1000
Score Score Score

Figure 5: Average depth, mobility, and coverage rates vs. Score (# of successful runs)
for 1200 automatically generated heuristics

statistically meaningful comparison of meta-level search algorithms with parameter
tuning would be a nontrivial endeavor. However, the following results indicate that
the current CLASS algorithm (Figure 2) is at least a reasonable approach.

We first compared our algorithm to a simple, random generate-and-test (G&T) al-
gorithm. G&T simply samples the space of s-expressions by repeatedly calling the ran-
dom s-expression generated used during the initialization of the population in Figure
2, Line 1. We ran each algorithm 10 times. Each run involved 5500 fitness function eval-
uations. In each run of the GP, we generated and evaluated a population of 1000 and
ran until 4500 children had been generated and evaluated. For each run of G&T, 5500
random individuals were evaluated. Both algorithms were run with an s-expression
depth limit of 6. Let Si.s: denote the fitness function score (see Section 3.2) of the best
individual found during each run of either the GP or G&T. We compared the mean
value of Sp.s: over the 10 runs, i.e., Zﬁiéo Spest (1)/10, for our GP and G&T algorithms.
For GP, the mean value of Sy.s; was 1377 (with a standard deviation of 14.3), and for
G&T, the mean was 1213 with a standard deviation of 47.3. The difference between the
means is statistically significant (p < 0.001 according to a t-test). This shows that the
GP was significantly more effective than G&T at finding higher quality heuristics.

We have also investigated the use of standard GP crossover and mutation opera-
tors, but so far, we have not been successful in evolving competitive heuristics. Since a
single 5500 evaluation run of CLASS requires around 6 hours on a workstation, system-
atically tuning GP control parameters is a time-consuming and difficult task which we
have not yet done. More experimental work is needed to determine whether there exist
good control parameter settings which may allow standard GP operators to generate
heuristics that are competitive with Walksat and Novelty+.

6.1 Analysis of GP Populations

In order to better understand the characteristics of the populations of heuristics evolved
by the CLASS genetic algorithm, we analyzed the populations of heuristics evolved by
CLASS. We first considered a single run of the CLASS GP, which we call Run-1. This is
the run that generated the depth3-1 heuristic (population of 1000, 5500 total individuals

Evolutionary Computation Volume 16, Number 1 22

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

400 400

initial bopu\‘atwon‘ — iniial ‘popul‘ation‘ —

L final population - . final population -

9 0 Walksat(0.5) -~ o 30 Walksat(0.5) -
2800 [o 2300 e
N 2 ol
@ 250 | #2507}
[0} [}
Q o
S 200 S 200
0 [
° 150 © 150
[[
Qo o]
E 100 £ 100
=) 3
z z

50 50

L L
0 0
0 01020304 0506070809 1 0 010203 040506070809 1
Cumulative Probability Cumulative Probability

Figure 6: Analysis of initial and final populations for two CLASS GP runs.

generated, depth limit of 3). From this run, we consider the initial, randomly generated
population (initial population), as well as the population at the end of the run (final popu-
lation). For each member (heuristic) of the initial population, we executed the heuristic
on five times on each of the 80-variable, Suite B instances with a cutoff of 30,000 flips
per trial, and recorded the number of successful trials. The maximum possible score is
500 (5 trials per instance x 100 instances = 500). We then repeated this procedure for
each member of the final population. This data (Run-1 is plotted on the left side of Fig-
ure 6 as a cumulative probability distribution. For example, according to the graph on
the left side of Figure 6, approximately 63% of the initial population had 200 or fewer
successful trials, and approximately 20% of the final population had fewer 300 or fewer
successful trials. For reference, we also executed the standard Walksat heuristic (walk
probability = 0.5) five times on the same set of instances, resulting in 274 successful
runs. This is shown as a straight horizontal line in Figure 6. This analysis was repeated
for another sample run, Run-2, which used the same parameters as Run-1. The results
for Run-2 are shown on the right in Figure 6. Note that:

o The final populations for these two runs are clearly composed of better individuals
than the initial populations

e Some of the randomly generated heuristics in the initial populations scored com-
parably to the standard Walksat algorithm.

o Almost all members of the final populations outscore Walksat.

6.2 On the Utility of Randomly Generated Individuals

The previous section showed that with respect to one particular evaluation function,
some of the members of the initial population appeared to be comparable with the
standard Walksat algorithm. This suggests that the CLASS language defines a search
space of SAT local search heuristics which is rich in high-quality heuristics, compared
to previously published, manually designed heuristics.

To further demonstrate the power of heuristics that could be generated by random
generate-and-test, we evaluated the best individual heuristic generated by on one of

Evolutionary Computation Volume 16, Number 1 23

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

(I F-TABU 40
(OLDER- VAR (GET- VAR +BC0+ +NET- GAl N+)
(1 F- VAR- COWPARE / = +PCS- GAI N+
(OLDER- VAR (GET- VAR +BCl+ +PCS- GAl N+)
(GET- VAR +BCl+ +NEG GAI N+))
(1 F-RAND- LT 0. 75 (GET- VAR +BCl+ +POS- GAl N+)
(GET- VAR +BCO+ +POS- GAI N+))))

(GET- VAR +BC0+ +NEG GAI N+))

Figure 7: C-Rand: a randomly generated heuristic (best out of 5500 random individuals)

the G&T runs described in Section 6. We ran this heuristic, C- Rand on the Gottlieb
benchmark suite. The results are included in Tables 3-7. While the search efficiency
of C-Rand is not particularly outstanding when compared to the evolved heuristics, it
performs quite well on random 3-SAT instances, and it also runs fast due its relative
simplicity. For example, on the 100 variable problems in SuiteA, SuiteB, and SuiteC
(Table 4), C-Rand significantly outperforms Walksat and Novelty+, as well as most
of the direct, evolutionary approaches, and has better runtimes than the majority of
the evolved heuristics. The fact that a randomly generated heuristic can perform rela-
tively well compared to some previously published, human-designed heuristics indi-
cates that the CLASS language successfully defines a search space where it is relatively
easy to find high-quality solutions. Furthermore, the fact that C-Rand is competitive
with algorithms that have been published in recent years suggests that while humans
are able to invent new building blocks for SAT algorithms, human performance on gen-
erating good combinations of the building blocks is difficult for humans (i.e., not much
better than random generate-and-test).

7 Related Work

CLASS uses genetic programming to generate control rules for a problem-solver. This
approach has previously been used successfully in a number of domains, including
the evolution of heuristics for a compiler (Stephenson, O’Reilly, Martin, and Amaras-
inghe, 2003) and the evolution of control rules for the PRODIGY planner (Aler, Borrajo,
and Isasi, 2002). Several systems in the Al literature have learned to improve the per-
formance of constraint satisfaction systems by modifying heuristics using what is es-
sentially a heuristically guided generate-and-test procedure like CLASS. MULTI-TAC
(Minton, 1996) adapts generalized constraint-satisfaction heuristics for specific prob-
lem classes. COMPOSER was used to configure an antenna-network scheduling algo-
rithm (Gratch and Chien, 1996). Although CLASS clearly follows the spirit of previous
systems such as MULTI-TAC, COMPOSER, and the planning system by Aler et al., we
believe that CLASS extends the frontier of this line of research by demonstrating that
given the same building blocks available to human researchers, an automated system
could outperform well-known SAT solvers that were the result of an intensive research
effort by a community of expert researchers through the 1990’s.

The heuristics represented by CLASS can be viewed as a way to choose among
low-level variable selection heuristics, where the functions in Table 2 with vari abl e
return types correspond to the low-level heuristics. From this point of view, the
standard Walksat heuristic is a choice among the two low-level heuristics (GET- VAR

Evolutionary Computation Volume 16, Number 1 24

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

+BC0+ +NEG GAl Nt) and (VAR- RANDOM +BC0+) (see Figure 3). Thus, CLASS can
be considered an instance of a hyper-heuristic approach to solving difficult combinatorial
problems. The term “hyper-heuristic” was coined by Cowling, Kendall, and Soubeiga,
(2001) to refer to the general approach of applying meta-level techniques (including
learning) that “choose between a set of low-level heuristics, using some learning mech-
anism”. A survey of hyper-heuristic approaches is by Burke et al. (2003).

CLASS works on building blocks that are lower level than most of the work in the
hyper-heuristic literature. For example, a typical example of the hyper-heuristic ap-
proach is work of Ross et al. (2002), who developed a learning classifier system (XCS)
which, given a bin packing problem instance, applies a set of 8 bin packing heuris-
tics such as least-fit decreasing and next-fit-decreasing at each step, where the XCS
determines which heuristic to apply next. These heuristics such as least-fit decreasing
and next-fit-decreasing are relatively high-level compared to the CLASS primitives In
addition, the “choice” of low-level heuristic made by the CLASS local search heuris-
tic applies to just one single variable flip; at each flip, the evolved heuristic is applied
and a new “choice” is made. This contrasts with Ross et al.’s approach, where each
application of a heuristic choice results in a large number of changes to the solution
state.

On one hand, the building blocks used by CLASS to generate the initial population
(i.e., the functions and terminals) are lower-level components than the heuristics that
are typically used in hyper-heuristic approaches, where the component heuristics are
fully functional heuristics (e.g., the heuristics used by Ross et al. for bin packing).

Burke, Hyde, and Kendall, evolve bin packing heuristics using genetic program-
ming (Burke, Hyde, and Kendall, 2006). They evolve heuristics that determine whether
or not to put a given item into a given bin. The evolved function takes as input a bin
and an item ? and returns a number. If the return value is greater than 0, the item is
placed in the bin; otherwise the item is not placed in the bin. In the terminology of con-
straint programming, this is a value selection heuristic, which, given a variable, decides
which value to assign to it. Note that for SAT local search, value selection is trivial,
because the only values for a variable are true or false, so once a variable is selected
(Figure 1, there is only one other value available to assign. CLASS, on the other hand,
evolves a variable selection heuristic. In the system of Burke et al., the variable selection
heuristic is the decision about which (bin, item) pair to consider next as input to their
evolved value selection heuristic (they use a static ordering which loops over bins and
items).

Another technique that has been used to creating “composite” heuristics for prob-
lem solvers is the algorithm portfolio approach (Huberman, Lukose, and Hogg, 1997;
Gomes and Selman, 1997), which allocates resources among a set of alternative algo-
rithms for solving a given problem instance. As with hyper-heuristics, this differs from
CLASS in that the building blocks used for portfolios are higher-level algorithms.

There is a very large body of work on hybrid algorithms that combine evolutionary
computation and local search. The key difference between CLASS and hybrid genetic-
local search algorithms is that while solving a particular problem instance, the learn-
ing/evolutionary component of CLASS is not used — the learned heuristic is static when
itis applied to any given problem instance. The genetic programming algorithm is only

9This is description is highly simplified for the sake of clarity — see (Burke et al., 2006).

Evolutionary Computation Volume 16, Number 1 25

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

used off-line during the “training” phase in order to generate a local search heuristic
that is likely to succeed on a given problem instance. In contrast, typical genetic-local
search hybrids such as memetic algorithms (Merz and Freisleben, 2000; Krasnogor and
Smith, 2000), as well as several of the direct, evolutionary approaches for SAT surveyed
in Section 4.8 apply both genetic and local searches to a given problem instance. In ad-
dition, some recent memetic algorithms evolve not only the solution itself, but also
evolve the local search heuristics during the run of the algorithm on a given instance
(Smith, 2002; Krasnogor and Gustafson, 2004).

8 Discussion and Future Work

The main contribution of this paper is the demonstration that the discovery of SAT lo-
cal search heuristics, a very difficult task that has occupied many human researchers,
could be automated by a genetic programming system. A historical analysis of the
SAT local search literature showed that well-known, successful SAT heuristics are com-
posed of key building blocks. We showed that although these building blocks were
all well-known by 1994, significant advances based on new combinations of building
blocks were being made as late as 1999. We showed that a genetic programming system
which manipulated the same building blocks that were available to the SAT research
community in 1994, could discover algorithms that were competitive (with respect to
both search efficiency and runtime) with the state-of-the-art SAT solvers of 1999.

When preliminary results for this work was first published based on an earlier ver-
sion of CLASS (Fukunaga, 2002), Novelty+ and Walksat were the state of the art local
search algorithms, despite many attempts to improve upon them. Although other algo-
rithms had been proposed which could outperform the Walksat with respect to search
efficiency (flips), none of them could significantly outperform Novelty+ with respect
to overall runtime, because the mechanisms that were responsible for improved search
efficiency came at the cost of a high per-flip complexity. 1 A hand-coded algorithm
which could convincingly outperform Novelty+ with respect to both search efficiency
and runtime was not found until the SAPS algorithm in 2002 (Hutter, Tompkins, and
Hoos, 2002), which used an efficient implementation of clause weighting. This shows
that in historical context, discovering algorithms competitive with the Novelty variants
was clearly a very challenging task which had confounded many researchers.

Recently, the state of the art in SAT local search has improved significantly due to
the discovery of very efficient implementations of clause weights (Hutter et al., 2002;
Thornton, 2005). Furthermore, Pham, Thornton, and Sattar have recently developed
a technique which represents dependencies between variables and significantly im-
proves SAT local search performance on structured instances from CAD and Al appli-
cations (Pham, thornton, and Sattar, 2007). A promising direction for future research is
to improve CLASS by adding clause weighting and variable dependencies. Since we
have shown in this paper that CLASS is able to generate heuristics that are competitive
with the Walksat and Novelty variants, given all the building blocks that were avail-
able to the Walksat and Novelty inventors, there is good reason to be optimistic that it
is possible to generate algorithms that are competitive with the current state of the art
algorithms, given the same key, additional building blocks.

10§ ¢, it was well-known since 1993 that clause weighting resulted in significant improvements in search
efficiency (Selman and Kautz, 1993). However, overall runtimes of clause weighting tended to underperform
Walksat and Novelty variants.

Evolutionary Computation ~Volume 16, Number 1 26

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

There are many other avenues for future work. In Section 4.7, we showed that a
CLASS heuristic which was evolved using only random 3-SAT instances in the training
set generalized fairly well on more structured problem instances which were generated
using different problem generators. An area for future work is to further improve gen-
eralization by extending the CLASS evaluation function 3.2 to include instances from a
wider range of problem classes.

There is much more work to be done in exploring alternate mechanisms for explor-
ing the space of heuristics. We showed that the current CLASS GP algorithm is sufficient
for generating heuristics which are competitive with standard local search heuristics,
and that the CLASS language (functions/terminals) define a search space where it is
relatively easy to find high-quality heuristics. As shown in Section 6.2, even randomly
generated heuristics in this language can compete with some previously published,
human-designed heuristics; this further supports our hypothesis that generating good
combinations of the building blocks is very difficult for humans (i.e., not much better
than brute-force, generate and test). This suggests that an important area for future
work is to improve the process of developing new heuristic algorithms by combin-
ing the strengths of humans (invention of building blocks) and machines (brute-force
search). One approach is to integrate more human guidance into CLASS. We have
done some preliminary work in this direction by implementing CLASS-L, which incor-
porates a library of hand-coded fragments and higher level building blocks (Fukunaga,
2002). Finally, although we showed that the current CLASS GP significantly outper-
forms random sampling of this space, we have only begun to explore the space of GP
algorithms, and future work will more systematically investigate alternative GP search
strategies (e.g., using standard crossover and mutation operators).

9 Conclusion

This paper described and evaluated a system for automatically discovering SAT local
search variable selection heuristics. We have shown that a simple genetic program-
ming algorithm based on a single operator (composition) suffices to generate effec-
tive SAT local search heuristics that are competitive with efficient implementations of
standard Walksat and Novelty variants, as well as previous evolutionary approaches.
The evolved heuristics scale and generalize fairly well on random instances as well as
more structured problem classes. The history of SAT heuristics suggests that human
researchers excel at finding and classifying the relevant building blocks for problem
solving. However, the task of combining these features into effective composite heuris-
tics appears to be a combinatorial problem that is difficult for humans. We have shown
that this difficult problem can be solved by a simple evolutionary approach, which
discovered new heuristics that are competitive with some of the best human-designed
heuristics for SAT. Our results demonstrate that evolutionary computation is a very
promising approach for discovering successful heuristics for difficult problems.

Acknowledgments

Thanks to Rich Korf and Jason Fama for helpful discussions, and Jim Clune for helpful com-
ments on a draft of this paper. Finnegan Southey provided valuable clarifications regarding the
implementation of the coverage metric measurements. Thanks to the anonymous reviewers for
helpful comments that significantly improved this paper.

Evolutionary Computation Volume 16, Number 1 27

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

References

Aler, R., Borrajo, D., and Isasi, P. (2002). Using genetic programming to learn and im-
prove control knowledge. Artificial Intelligence, 141(1-2), 29-56.

Burke, E., Hyde, M., and Kendall, G. (2006). Evolving bin packing heuristics with ge-
netic programming. In Proceedings of the 9th International Conference on Parallel
Problem Solving from Nature (PPSN), Lecture Notes in Computer Science Vol 4193,
pp- 860-869. Springer.

Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P, and Schulenburg, S. (2003). Hyper-
heuristics: An emerging direction in modern search technology. In Glover, F.
and Kochenberger, G. (Eds.), Handbook of Meta-heuristics, chap. 16, pp. 457-474.
Kluwer.

Cowling, P, Kendall, G., and Soubeiga, E. (2001). A hyperheuristic approach to schedul-
ing a sales summit. In Burke, E. and Erben, W. (Eds.), Selected Papers of the Third
International Conference on the Practice and Theory of Automated Timetabling (PATAT
2000), Lecture Notes in Computer Science, pp. 176-190.

de Jong, M. and Kosters, W. (1998). Solving 3-SAT using adaptive sampling. In Poutré,
H. and van den Herik, J. (Eds.), Proceedings of the Tenth Dutch/Belgian Artificial
Intelligence Conference, pp. 221-228.

Eiben, A. and van der Hauw, J. (1997). Solving 3-SAT with adaptive genetic algorithms.
In Proc. Fourth IEEE Conference on Evolutionary Computation, pp. 81-86.

Fukunaga, A. (2002). Automated discovery of composite SAT variable-selection heuris-
tics. In Proc. AAAI pp. 641-648.

Fukunaga, A. (2004a). Efficient implementations of SAT local search. In Proceedings
of Seventh International Conference on Theory and Applications of Satisfiability Testing
(SAT-2004), pp- 287-292, Vancouver, British Columbia.

Fukunaga, A. (2004b). Evolving local search heuristics for SAT. In Proc. Genetic and Evo-
lutionary Computation Conference (GECCO), Vol. 3103 of Lecture Notes in Computer
Science, pp. 483—494. Springer-Verlag.

Gent, I. and Walsh, T. (1993). Towards an understainding of hill-climbing procedures
for SAT. In Proceedings of National Conf. on Artificial Intelligence (AAAI), pp. 28-33.

Gomes, C. and Selman, B. (1997). Algorithm portfolio design: theory vs. practice. In
Proc. Uncertainty in Artificial Intelligence (UAI).

Gottlieb, J., Marchiori, E., and Rossi, C. (2002). Evolutionary algorithms for the satisfi-
ability problem. Evolutionary Computation, 10(1), 35-50.

Gottlieb, J. and Voss, N. (2000). Adaptive fitness functions for the satisfiability problem.
In Proceedings of the Conference on Parallel Problem Solving from Nature, Vol. 1917 of
Lecture Notes in Computer Science, pp. 621-630. Springer-Verlag.

Gratch, J. and Chien, S. (1996). Adaptive problem-solving for large-scale scheduling
problems: A case study. Journal of Artificial Intelligence Research, 4, 365-396.

Hoos, H. (1998). Stochastic local search - methods, models, applications. Ph.D. thesis, TU
Darmstadt.

Hoos, H. (1999). On the run-time behaviour of stochastic local search algorithms for
SAT. In Proceedings of AAAL pp. 661-666.

Evolutionary Computation Volume 16, Number 1 28

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

Hoos, H. and Stutzle, T. (2000). Local search algorithms for SAT: An empirical evalua-
tion. Journal of Automated Reasoning, 24, 421-481.

Huberman, B., Lukose, R., and Hogg, T. (1997). An economics approach to hard com-
putational problems. Science, 275(5269), 51-4.

Hutter, E,, Tompkins, D., and Hoos, H. (2002). Scaling and probabilistic smoothing:
Efficient dynamic local search for SAT. In Proc. Eighth International Conference on
the Principles and Practice of Constraint Programming (CP’02), pp. 233-248.

Kautz, H. (2006). Deconstructing planning as satisfiability. In Proc. Twenty-first National
Conference on Artificial Intelligence (AAAI-06), pp. 1524-1526.

Koza, J. (1992). Genetic Programming: On the Programming of Computers By the Means of
Natural Selection. MIT Press.

Krasnogor, N. and Gustafson, S. (2004). A study on the use of ”self-generation” in
memetic algorithms. Natural Computing, 3(1), 53-76.

Krasnogor, N. and Smith, J. (2000). A memetic algorithm with self-adaptive local search:
TSP as a case study. In Proceedings of Genetic and Evolutionary Computation Confer-
ence (GECCO 2000), pp. 987-994. Morgan Kauffman.

Lardeux, E, Saubion, E,, and Hao,].-K. (2006). GASAT: A genetic local search algorithm
for the satisfiability problem. Evolutionary Computation, 14(2), 223-253.

Luke, S. and Panait, L. (2006). A comparison of bloat control methods for genetic pro-
gramming. Evol. Comput., 14(3), 309-344.

Marchiori, E. and Rossi, C. (1999). A flipping genetic algorithm for hard 3-SAT prob-
lems. In et al, W. B. (Ed.), Proceedings of Genetic and Evolutionary Computation
Conference, pp. 393—400. Morgan Kaufmann.

McAllester, D., Selman, B., and Kautz, H. (1997). Evidence for invariants in local search.
In Proceedings of National Conf. on Artificial Intelligence (AAAI), pp. 459-465.

Merz, P. and Freisleben, B. (2000). Fitness landscapes, memetic algorithms, and greedy
operators for graph bipartitioning. Evolutionary Computation, 8(1), 61-91.

Minton, S. (1996). Automatically configuring constraint satisfaction problems: a case
study. Constraints, 1(1).

Mitchell, D., Selman, B., and Levesque, H. (1992). Hard and easy distributions of SAT
problems. In Proceedings of National Conf. on Artificial Intelligence (AAAI), pp. 459—
65.

Montana, D. (1993). Strongly typed genetic programming. Tech. rep., Bolt, Beranek and
Neuman (BBN).

Pham, D., thornton, J., and Sattar, A. (2007). Building structure into local search for SAT.
In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp.
2359-2364.

Ross, P, Schulenburg, S., Marin-Blazques, J., and Hart, E. (2002). Hyper-heuristics:
learning to combine simple heuristics in bin-packing problems. In Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO-2002), pp. 942-948.

Rossi, C., Marchiori, E., and Kok, J. (2000). An adaptive evolutionary algorithm for the
satisfiability problem. In Proceedings of ACM Symposium on Applied Computing, pp.
463-469, New York, New York. ACM.

Evolutionary Computation Volume 16, Number 1 29

DRAFT:Final Version published in Evolutionary Computation, MIT Press, 16(1):31-61, 2008

Schuurmans, D. and Southey, F. (2001). Local search characteristics of incomplete SAT
procedures. Artificial Intelligence, 132, 121-150.

Selman, B. and Kautz, H. (1993). Domain-independent extensions to GSAT: Solving
large structured satisfiability problems. In Proc. Intl. Joint Conf. Artificial Intelli-
gence (IJCAI).

Selman, B., Kautz, H., and Cohen, B. (1994). Noise strategies for improving local search.
In Proceedings of National Conf. on Artificial Intelligence (AAAI).

Selman, B., Levesque, H., and Mitchell, D. (1992). A new method for solving hard satis-
fiability problems. In Proceedings of National Conf. on Artificial Intelligence (AAAI),
pp. 440-446.

Smith, J. (2002). Co-evolution of memetic algorithms: initial results. In etal., J. M. (Ed.),
Proceedings of the 7th International Conference on Parallel Problem Solving from nature
(PPSN), Lecture Notes in Computer Science Vol.4193, pp. 537-548. Springer.

Southey, F. (2005). Constraint metrics for local search. In Proc. 8th International Confer-
ence on Theory and Applications of Satisfiability Testing (SAT-2005), pp. 269-281.

Stephenson, M., O'Reilly, U., Martin, M., and Amarasinghe, S. (2003). Meta optimiza-
tion: Improving compiler heuristics with machine learning. In Proceedings of the
SIGPLAN ’03 Conference on Programming Language Design and Implementation, San
Diego, CA.

Thornton, J. (2005). Clause weighting local search for SAT. Journal of Automated Reason-
ing, 35(1-3), 97-142.

Velev, M. and Bryant, R. (2003). Effective use of boolean satisfiability procedures in the
formal verification of superscalar and vliw microprocessors. Journal of Symbolic
Computation, 35(2), 73-106.

Whitley, D. (1989). The genitor algorithm and selection pressure: Why rank-based al-
location of reproductive trials is best. In Proc. International Conf. on Genetic Algo-
rithms (ICGA), pp. 116-121.

Evolutionary Computation Volume 16, Number 1 30

